论文标题
波浪 - 克莱因 - 戈登系统的全球解决方案在两个空间维度上具有强烈的耦合形式
Global solutions of wave-Klein-Gordon system in two spatial dimensions with strong couplings in divergence form
论文作者
论文摘要
在本文中,我们建立了一种特殊类型的波浪klein-gordon系统的全球适应性定理,该定理在其波动方程的右侧具有强烈的耦合术语。我们通过构建具有原始未知数的原始词的辅助系统来应对问题。然后,将结果直接应用于2+1个时空的Klein-Gordon-Zakharov系统,并使用一般的小型定位初始数据。在本文的最后,我们还为在2+1维情况下的一类完全测量的波浪图的全球稳定性问题提供了初步答案。
In this paper we established the global well-posedness theorem for a special type of wave-Klein-Gordon system that have the strong coupling terms in divergence form on the right hand side of its wave equation. We cope with the problem by constructing an auxiliary system with the shifted primitives of the original unknowns. The result is then applied directly on Klein-Gordon-Zakharov system in 2+1 space-time with general small-localized-regular initial data. In the end of this paper, we also give a preliminary answer to the question of global stability of a class of totally geodesic the wave maps in 2+1 dimensional case.