论文标题

2D和3D随机对流Brinkman-Forchheimer方程的随机吸引子

Random attractors for 2D and 3D stochastic convective Brinkman-Forchheimer equations in some unbounded domains

论文作者

Kinra, Kush, Mohan, Manil T.

论文摘要

在这项工作中,我们考虑了由不规则添加白噪声驱动的两维对流Brinkman-Forchheimer(2D和3D SCBF)方程$$ \ mathrm {d} \ boldsymbol {u} - [μδ\ boldsymbol {u} - (\ boldsymbol {u} \ cdot \ nabla)\ boldsymbol {u}-α\ boldsymbol {u}-β| \ boldsymbol {u} |^{r-1} \ boldsymbol {u} - \ nabla p] \ mathrm {d} t = \ boldSymbol {f} \ mathrm {d} t+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m rmm {w},\ \ \ nabla \ nabla \ cdot \ cdot \ boldsymbol \ boldsymbol \ boldsymbol域(例如PoincaréDomains)$ \ MATHCAL {O} \ subset \ Mathbb {r}^d $($ d = 2,3 $),其中$ \ mathrm {w}(\ cdot)$是Hilbert Space Realited Wiener在某些给定的过滤概率上的Wiener进程,并讨论了它的解决方案,并讨论了它的解决方案。 For $d=2$ with $r\in[1,\infty)$ and $d=3$ with $r\in[3,\infty)$ (for $d=r=3$ with $2βμ\geq 1$), we first prove the existence and uniqueness of a weak solution (in the analytic sense) satisfying the energy equality for SCBF equations driven by an irregular additive white noise in Poincaré domains by使用FAEDO-GALERKIN近似技术。由于SCBF方程的能量平等不是立即的,因此我们构建了一个序列,该序列同时在Lebesgue和Sobolev空间中收敛,这有助于我们证明能量平等。然后,我们建立了SCBF方程生成的随机流的随机吸引子的存在。在相应的卡梅隆 - 马丁蛋白空间(或重现核希尔伯特空间)的帮助下,克服了与不规则白噪声相关的技术困难之一。最后,我们解决了在Poincaré域(有限或无界)上定义的2D和3D SCBF方程的独特不变度度量的存在。此外,我们还提供了有关上述结果的扩展到一般无界领域的评论。

In this work, we consider the two and three-dimensional stochastic convective Brinkman-Forchheimer (2D and 3D SCBF) equations driven by irregular additive white noise $$\mathrm{d}\boldsymbol{u}-[μΔ\boldsymbol{u}-(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}-α\boldsymbol{u}-β|\boldsymbol{u}|^{r-1}\boldsymbol{u}-\nabla p]\mathrm{d} t=\boldsymbol{f}\mathrm{d} t+\mathrm{d}\mathrm{W},\ \nabla\cdot\boldsymbol{u}=0,$$ for $r\in[1,\infty),$ $μ,α,β>0$ in unbounded domains (like Poincaré domains) $\mathcal{O}\subset\mathbb{R}^d$ ($d=2,3$) where $\mathrm{W}(\cdot)$ is a Hilbert space valued Wiener process on some given filtered probability space, and discuss the asymptotic behavior of its solution. For $d=2$ with $r\in[1,\infty)$ and $d=3$ with $r\in[3,\infty)$ (for $d=r=3$ with $2βμ\geq 1$), we first prove the existence and uniqueness of a weak solution (in the analytic sense) satisfying the energy equality for SCBF equations driven by an irregular additive white noise in Poincaré domains by using a Faedo-Galerkin approximation technique. Since the energy equality for SCBF equations is not immediate, we construct a sequence which converges in Lebesgue and Sobolev spaces simultaneously and it helps us to demonstrate the energy equality. Then, we establish the existence of random attractors for the stochastic flow generated by the SCBF equations. One of the technical difficulties connected with the irregular white noise is overcome with the help of the corresponding Cameron-Martin space (or Reproducing Kernel Hilbert space). Finally, we address the existence of a unique invariant measure for 2D and 3D SCBF equations defined on Poincaré domains (bounded or unbounded). Moreover, we provide a remark on the extension of the above mentioned results to general unbounded domains also.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源