论文标题

光电情报

Optoelectronic Intelligence

论文作者

Shainline, Jeffrey M.

论文摘要

为了设计和构建用于通用情报的硬件,我们必须考虑神经科学和非常大规模集成的原理。对于能够通用智能的大型神经系统,用于通信和电子设备的光子学的属性是互补的和相互依存的。使用灯进行通信,可以在没有交通依赖的瓶颈的大型系统上进行高风扇和低延迟信号传导。对于计算,约瑟夫森电路的固有非线性,高速和低功耗有利于复杂的神经功能。在4 \,K可以使用单光子探测器和硅光源,这两个功能可以提高效率和经济性。在这里,我绘制一个概念,用于光电硬件,从突触电路开始,继续通过晶圆尺度的集成,并扩展到与光纤白质互连的系统,可能在人脑及其他的规模上。

To design and construct hardware for general intelligence, we must consider principles of both neuroscience and very-large-scale integration. For large neural systems capable of general intelligence, the attributes of photonics for communication and electronics for computation are complementary and interdependent. Using light for communication enables high fan-out as well as low-latency signaling across large systems with no traffic-dependent bottlenecks. For computation, the inherent nonlinearities, high speed, and low power consumption of Josephson circuits are conducive to complex neural functions. Operation at 4\,K enables the use of single-photon detectors and silicon light sources, two features that lead to efficiency and economical scalability. Here I sketch a concept for optoelectronic hardware, beginning with synaptic circuits, continuing through wafer-scale integration, and extending to systems interconnected with fiber-optic white matter, potentially at the scale of the human brain and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源