论文标题
内核积分运算符的功能空间的最佳性
Optimality of function spaces for kernel integral operators
论文作者
论文摘要
我们探讨了作用于重排 - 不变(R.I.)空间的内核积分运算符的有界性能。特别是对于给定的R.I. Space $ x $我们表征其最佳范围合作伙伴,即最小的R.I.太空$ y $,使运营商从$ x $到$ y $。我们将一般结果应用于洛伦兹的空间,以说明它们的强度。
We explore boundedness properties of kernel integral operators acting on rearrangement-invariant (r.i.) spaces. In particular, for a given r.i. space $X$ we characterize its optimal range partner, that is, the smallest r.i. space $Y$ such that the operator is bounded from $X$ to $Y$. We apply the general results to Lorentz spaces to illustrate their strength.