论文标题
预测与高阶图卷积网络的生物医学相互作用
Predicting Biomedical Interactions with Higher-Order Graph Convolutional Networks
论文作者
论文摘要
生物医学相互作用网络具有令人难以置信的潜力,可在预测生物学上有意义的相互作用,疾病网络生物标志物以及发现推定的药物靶标方面有用。最近,已经提出了图神经网络来有效地学习生物医学实体的表示,并获得了生物医学相互作用预测的最先进的结果。这些方法仅考虑来自直接邻居的信息,但无法在各个距离内从邻居那里学习一般的特征。在本文中,我们提出了一个高阶图卷积网络(HOGCN),以汇总高阶邻居的信息以进行生物医学相互作用预测。具体而言,HOGCN在各个距离内收集邻居的特征表示,并学习其线性混合以获得生物医学实体的信息表示。在四个相互作用网络上进行的实验,包括蛋白质 - 蛋白质,药物 - 靶标和基因 - 酶酶相互作用,表明HOGCN实现了更准确和校准的预测。当考虑到各个距离的邻居特征表示时,HOGCN在嘈杂的稀疏相互作用网络上表现良好。此外,一组新型的相互作用预测通过基于文献的案例研究来验证。
Biomedical interaction networks have incredible potential to be useful in the prediction of biologically meaningful interactions, identification of network biomarkers of disease, and the discovery of putative drug targets. Recently, graph neural networks have been proposed to effectively learn representations for biomedical entities and achieved state-of-the-art results in biomedical interaction prediction. These methods only consider information from immediate neighbors but cannot learn a general mixing of features from neighbors at various distances. In this paper, we present a higher-order graph convolutional network (HOGCN) to aggregate information from the higher-order neighborhood for biomedical interaction prediction. Specifically, HOGCN collects feature representations of neighbors at various distances and learns their linear mixing to obtain informative representations of biomedical entities. Experiments on four interaction networks, including protein-protein, drug-drug, drug-target, and gene-disease interactions, show that HOGCN achieves more accurate and calibrated predictions. HOGCN performs well on noisy, sparse interaction networks when feature representations of neighbors at various distances are considered. Moreover, a set of novel interaction predictions are validated by literature-based case studies.