论文标题
DMFT的加速杂质求解器及其示意图扩展
Accelerated impurity solver for DMFT and its diagrammatic extensions
论文作者
论文摘要
我们提出comctqmc,这是一种加速量子杂质求解器。它使用连续的量子蒙特卡洛(CTQMC)算法,其中分区函数根据杂交函数(CT-HYB)扩展。 COMCTQMC同时支持分区和蠕虫空间测量值,并使用改进的估计器和减少的密度矩阵,以尽可能改善可观察的测量值。 COMCTQMC有效地测量了所有一个和两粒子绿色的功能,所有静态可观察物与当地的汉密尔顿式通勤以及每个杂质轨道的占用。 COMCTQMC可以用晶体场溶解与费米子和玻色子浴的晶体磁场的杂质。最重要的是,COMCTQMC使用图形处理单元(GPU)(如果有),当希尔伯特空间足够大时,可以显着加速CTQMC算法。我们在600 K的$δ$ -PU的模拟中,与(无)晶体场的模拟中证明了超过600(100)的加速度。在更容易的问题中,GPU提供了令人印象深刻的加速度,甚至减速CTQMC。在这里,我们描述了COMCTQMC使用的理论,算法和结构,以达到这一特征和加速度。
We present ComCTQMC, a GPU accelerated quantum impurity solver. It uses the continuous-time quantum Monte Carlo (CTQMC) algorithm wherein the partition function is expanded in terms of the hybridisation function (CT-HYB). ComCTQMC supports both partition and worm-space measurements, and it uses improved estimators and the reduced density matrix to improve observable measurements whenever possible. ComCTQMC efficiently measures all one and two-particle Green's functions, all static observables which commute with the local Hamiltonian, and the occupation of each impurity orbital. ComCTQMC can solve complex-valued impurities with crystal fields that are hybridized to both fermionic and bosonic baths. Most importantly, ComCTQMC utilizes graphical processing units (GPUs), if available, to dramatically accelerate the CTQMC algorithm when the Hilbert space is sufficiently large. We demonstrate acceleration by a factor of over 600 (100) in a simulation of $δ$-Pu at 600 K with (without) crystal fields. In easier problems, the GPU offers less impressive acceleration or even decelerates the CTQMC. Here we describe the theory, algorithms, and structure used by ComCTQMC in order to achieve this set of features and level of acceleration.