论文标题

流行病学模型中的机器学习驱动政策优化

Machine Learning-Powered Mitigation Policy Optimization in Epidemiological Models

论文作者

Thiagarajan, Jayaraman J., Bremer, Peer-Timo, Anirudh, Rushil, Germann, Timothy C., Del Valle, Sara Y., Streitz, Frederick H.

论文摘要

管理公共卫生危机的一个关键方面是有效地平衡预防和缓解策略,同时考虑其社会经济影响。特别是,考虑到何时可以提供疫苗的不确定性,确定不同非药物干预措施(NPI)对有效使用公共资源的影响是一个重要的问题。在本文中,我们提出了一种基于流行病学模型获得最佳政策建议的新方法,该建议可以在不同的干预措施下表征疾病进展,并采取一种看待奖励优化策略,以在流行病的不同阶段选择合适的NPI。考虑到任何流行病学模型及其指数性的固有的时间延迟,尤其是非托管流行病的指数性质,我们发现这种审视的策略侵犯了非平凡的政策,这些政策非常遵守指定的约束。使用两个不同的流行病学模型,即SEIR和Epicast,我们评估了所提出的算法以确定最佳的NPI策略,这是对每日新案例的数量的限制,主要的回报是缺乏限制。

A crucial aspect of managing a public health crisis is to effectively balance prevention and mitigation strategies, while taking their socio-economic impact into account. In particular, determining the influence of different non-pharmaceutical interventions (NPIs) on the effective use of public resources is an important problem, given the uncertainties on when a vaccine will be made available. In this paper, we propose a new approach for obtaining optimal policy recommendations based on epidemiological models, which can characterize the disease progression under different interventions, and a look-ahead reward optimization strategy to choose the suitable NPI at different stages of an epidemic. Given the time delay inherent in any epidemiological model and the exponential nature especially of an unmanaged epidemic, we find that such a look-ahead strategy infers non-trivial policies that adhere well to the constraints specified. Using two different epidemiological models, namely SEIR and EpiCast, we evaluate the proposed algorithm to determine the optimal NPI policy, under a constraint on the number of daily new cases and the primary reward being the absence of restrictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源