论文标题
多模式数据收集,用于衡量大规模参与者队列的健康,行为和生活环境:部署的概念框架和发现
Multi-Modal Data Collection for Measuring Health, Behavior, and Living Environment of Large-Scale Participant Cohorts: Conceptual Framework and Findings from Deployments
论文作者
论文摘要
随着移动技术变得越来越丰富,便携式和无处不在,由智能设备捕获的数据正在以前所未有的综合性,毫无意义和生态有效性来对用户的日常生活有丰富的见解。在过去的十年中,已经进行了许多人类受试者研究,以检查移动传感的使用来揭示个人行为模式和健康结果。尽管了解健康和行为是大多数研究的重点,但我们发现对衡量个人环境的关注最少,尤其是与其他以人为中心的数据方式一起。此外,在大多数现有研究中,参与者队列的规模远低于几百,对发现有关移动传感信号和人类结果之间关系的可靠性的问题留下了问题。为了解决这些限制,我们开发了一个家庭环境传感器套件,用于连续的室内空气质量跟踪,并与已建立的移动传感和体验采样技术一起部署了它,在一项在美国一所主要的研究所的研究中,每个数据类型多达1584名学生参与者的队列研究中,该研究最多1584名学生参与者。在本文中,我们首先提出了一个概念框架,该框架通过其时间覆盖和空间自由系统地组织以人为中心的数据模式。然后,我们报告了我们的研究设计和程序,部署的技术和方法,收集到的数据的描述性统计以及我们广泛的探索性分析结果。我们的新颖数据,概念发展和分析结果为未来以人为中心的感应研究的数据收集和假设的产生提供了重要的指导。
As mobile technologies become ever more sensor-rich, portable, and ubiquitous, data captured by smart devices are lending rich insights into users' daily lives with unprecedented comprehensiveness, unobtrusiveness, and ecological validity. A number of human-subject studies have been conducted in the past decade to examine the use of mobile sensing to uncover individual behavioral patterns and health outcomes. While understanding health and behavior is the focus for most of these studies, we find that minimal attention has been placed on measuring personal environments, especially together with other human-centric data modalities. Moreover, the participant cohort size in most existing studies falls well below a few hundred, leaving questions open about the reliability of findings on the relations between mobile sensing signals and human outcomes. To address these limitations, we developed a home environment sensor kit for continuous indoor air quality tracking and deployed it in conjunction with established mobile sensing and experience sampling techniques in a cohort study of up to 1584 student participants per data type for 3 weeks at a major research university in the United States. In this paper, we begin by proposing a conceptual framework that systematically organizes human-centric data modalities by their temporal coverage and spatial freedom. Then we report our study design and procedure, technologies and methods deployed, descriptive statistics of the collected data, and results from our extensive exploratory analyses. Our novel data, conceptual development, and analytical findings provide important guidance for data collection and hypothesis generation in future human-centric sensing studies.