论文标题
Krighedge:高斯进程代理Delta Hedging
KrigHedge: Gaussian Process Surrogates for Delta Hedging
论文作者
论文摘要
我们研究了基于高斯工艺(GP)替代的Greeks近似值的机器学习方法。该方法采用噪声观察到的期权价格,适合非参数输入输出图,然后在分析上区分后者以获得各种价格敏感性。我们的动机是在直接计算昂贵的情况下,例如在本地波动率模型中计算希腊人,或者只能完成大约完成。我们对GP代理的许多方面进行了详细的分析,包括选择内核家族,模拟设计,趋势功能的选择和噪声的影响。 我们进一步讨论了对三角洲套期保值的应用,包括将增量近似质量与离散时间对冲损失相关联的新引理。通过两项广泛的案例研究来说明结果,这些案例研究考虑了Delta,Theta和Gamma的估计以及使用各种统计指标的基准近似质量以及不确定性定量。在我们的主要收费中,建议使用Matern内核,包括虚拟训练点以捕获边界条件的好处,以及在基于股票路径的数据集中培训时的忠诚度损失。
We investigate a machine learning approach to option Greeks approximation based on Gaussian process (GP) surrogates. The method takes in noisily observed option prices, fits a nonparametric input-output map and then analytically differentiates the latter to obtain the various price sensitivities. Our motivation is to compute Greeks in cases where direct computation is expensive, such as in local volatility models, or can only ever be done approximately. We provide a detailed analysis of numerous aspects of GP surrogates, including choice of kernel family, simulation design, choice of trend function and impact of noise. We further discuss the application to Delta hedging, including a new Lemma that relates quality of the Delta approximation to discrete-time hedging loss. Results are illustrated with two extensive case studies that consider estimation of Delta, Theta and Gamma and benchmark approximation quality and uncertainty quantification using a variety of statistical metrics. Among our key take-aways are the recommendation to use Matern kernels, the benefit of including virtual training points to capture boundary conditions, and the significant loss of fidelity when training on stock-path-based datasets.