论文标题

优化基于持续同源的功能

Optimizing persistent homology based functions

论文作者

Carrière, Mathieu, Chazal, Frédéric, Glisse, Marc, Ike, Yuichi, Kannan, Hariprasad

论文摘要

基于拓扑口味的功能和损失来解决优化任务是一个非常活跃的数据科学和拓扑数据分析研究领域,并在非convex优化,统计和机器学习中应用。但是,文献中提出的方法通常固定在特定的应用和/或拓扑结构上,并且没有理论保证。为了解决这个问题,我们研究了与最常见的拓扑结构相关的一般地图的可不同性,即持久图。在实际的分析几何参数的基础上,我们提出了一个通用框架,该框架使我们能够以非常简单的方式定义和计算基于持久性功能的梯度。我们还为此类功能提供了一种简单,显式和充分的条件,用于收敛随机亚级别方法。该结果涵盖了文献中拓扑优化的所有结构和应用。最后,我们提供了相关的代码,易于处理,并与其他非访问方法和约束结合在一起,以及一些展示我们方法多功能性的实验。

Solving optimization tasks based on functions and losses with a topological flavor is a very active, growing field of research in data science and Topological Data Analysis, with applications in non-convex optimization, statistics and machine learning. However, the approaches proposed in the literature are usually anchored to a specific application and/or topological construction, and do not come with theoretical guarantees. To address this issue, we study the differentiability of a general map associated with the most common topological construction, that is, the persistence map. Building on real analytic geometry arguments, we propose a general framework that allows us to define and compute gradients for persistence-based functions in a very simple way. We also provide a simple, explicit and sufficient condition for convergence of stochastic subgradient methods for such functions. This result encompasses all the constructions and applications of topological optimization in the literature. Finally, we provide associated code, that is easy to handle and to mix with other non-topological methods and constraints, as well as some experiments showcasing the versatility of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源