论文标题
在标准模型中探索CP违规的起源
Exploring the Origin of CP Violation in the Standard Model
论文作者
论文摘要
在本文中,我们在标准模型中提出了CPV问题的非常通用但不是最终的解决方案。我们的研究始于自然的Hermitian $ {\ bf m^2} \ equiv m^q \ cdot m^{q \ dagger} $,而不是先前假定的Hermitian $ m^q $。这里使用的唯一假设是,$ \ bf m^2 $的实际部分和虚构部分可以分别由通用的$ \ bf u^q $矩阵对角度化。这样的假设导致了$ \ bf m^2 $模式,该模式仅取决于五个参数,并且可以通过$ \ bf u^q $矩阵分析地对角度化,该矩阵仅取决于两个参数。如果一个参数之一$ \ bf c〜(c'(c'(down-)夸克扇区为零,则两个派生的质量特征值将被预测退化。由于获得了$ \ bf u^q $模式,因此产生了36 $ v_ {ckm} $候选者,其中只有八个分为两组,将经验数据符合$ O(λ)$的顺序。在数值测试中进一步排除了其中的一个,并且幸存的组预测,夸克类型中的堕落对是最轻,最重的一代,而不是先前研究中假定的两代人。但是,在这项研究中,仍然存在一个不令人满意的预测,四个相等性,其中四个非常不同值的CKM元素被预测为平等。它表明此处研究的$ \ bf m^2 $模式仍然被那所采用的假设过多简化,并且只能通过将未简化的$ \ bf m^2 $矩阵直接直接直接通过直接化,才能通过对角度来获得最终解决方案。此处介绍的$ v_ {ckm} $已经非常接近这样的终极CPV解决方案。
In this article, we present a very general but not ultimate solution of CPV problem in the standard model. Our study starts from a naturally Hermitian ${\bf M^2}\equiv M^q \cdot M^{q\dagger}$ rather than the previously assumed Hermitian $M^q$. The only assumption employed here is that the real part and imaginary part of $\bf M^2$ can be, respectively, diagonalized by a common $\bf U^q$ matrix. Such an assumption leads to a $\bf M^2$ pattern which depends on only five parameters and can be diagonalized analytically by a $\bf U^q$ matrix which depends on only two of the parameters. Two of the derived mass eigenvalues are predicted degenerate if one of the parameters $\bf C ~(C')$ in up- (down-) quark sector is zero. As the $\bf U^q$ patterns are obtained, thirty-six $V_{CKM}$ candidates are yielded and only eight of them, classified into two groups, fit empirical data within the order of $O(λ)$. One of the groups is further excluded in a numerical test, and the surviving group predicts that the degenerate pair in a quark type are the lightest and the heaviest generations rather than the lighter two generations assumed in previous researches. However, there is still one unsatisfactory prediction in this research, a quadruple equality in which four CKM elements of very different values are predicted to be equal. It indicates the $\bf M^2$ pattern studied here is still oversimplified by that employed assumption and the ultimate solution can only be obtained by diagonalizing the unsimplified $\bf M^2$ matrix containing nine parameters directly. The $V_{CKM}$ presented here is already very close to such an ultimate CPV solution.