论文标题
最大渗透对抗数据扩展,以改善概括和鲁棒性
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
论文作者
论文摘要
对抗数据的增强已显示出有望训练强大的深层神经网络,以防止不可预见的数据转移或腐败。但是,很难定义启发式方法,以产生有效的虚拟目标分布,其中包含“硬”对抗性扰动,这些扰动与源分布有很大不同。在本文中,我们提出了一个新颖有效的正则化项,以增加对抗数据的增强。从理论上讲,我们从信息瓶颈原理中得出它,从而导致最大透镜公式。直觉上,该正则化项鼓励扰动潜在的源分布,以扩大当前模型的预测不确定性,以便生成的“硬”对抗性扰动可以改善训练过程中模型的鲁棒性。三个标准基准的实验结果表明,我们的方法始终通过统计学上的显着范围优于现有的最新技术状态。
Adversarial data augmentation has shown promise for training robust deep neural networks against unforeseen data shifts or corruptions. However, it is difficult to define heuristics to generate effective fictitious target distributions containing "hard" adversarial perturbations that are largely different from the source distribution. In this paper, we propose a novel and effective regularization term for adversarial data augmentation. We theoretically derive it from the information bottleneck principle, which results in a maximum-entropy formulation. Intuitively, this regularization term encourages perturbing the underlying source distribution to enlarge predictive uncertainty of the current model, so that the generated "hard" adversarial perturbations can improve the model robustness during training. Experimental results on three standard benchmarks demonstrate that our method consistently outperforms the existing state of the art by a statistically significant margin.