论文标题

通过不变的因果机制进行表示

Representation Learning via Invariant Causal Mechanisms

论文作者

Mitrovic, Jovana, McWilliams, Brian, Walker, Jacob, Buesing, Lars, Blundell, Charles

论文摘要

自我监督的学习已成为一种策略,即通过仅使用未标记的数据来预处理表示来减少对昂贵的监督信号的依赖。这些方法将启发式替代分类任务与数据增强结合在一起,并取得了重大成功,但是我们对这一成功的理论理解仍然有限。在本文中,我们使用因果框架分析了自我监督的表示学习。我们展示了如何通过对训练过程中使用的代理分类器的明确不变性约束来更有效地利用数据增强。基于此,我们提出了一个新颖的自我监督目标,通过不变机制(RESIC)进行表示,该目标通过不变性正常制度对跨增强的代理目标进行不变性预测,从而实现了改善的概括保证。此外,使用因果关系,我们将对比度学习,一种特殊的自我监督方法,并为这些方法的成功提供了另一种理论解释。从经验上讲,遗物在鲁棒性和对成像网的分布概括方面极大地优于竞争方法,同时在Atari上的表现也大大优于这些方法,即在$ 57 $中获得51美元的$ 51 $。

Self-supervised learning has emerged as a strategy to reduce the reliance on costly supervised signal by pretraining representations only using unlabeled data. These methods combine heuristic proxy classification tasks with data augmentations and have achieved significant success, but our theoretical understanding of this success remains limited. In this paper we analyze self-supervised representation learning using a causal framework. We show how data augmentations can be more effectively utilized through explicit invariance constraints on the proxy classifiers employed during pretraining. Based on this, we propose a novel self-supervised objective, Representation Learning via Invariant Causal Mechanisms (ReLIC), that enforces invariant prediction of proxy targets across augmentations through an invariance regularizer which yields improved generalization guarantees. Further, using causality we generalize contrastive learning, a particular kind of self-supervised method, and provide an alternative theoretical explanation for the success of these methods. Empirically, ReLIC significantly outperforms competing methods in terms of robustness and out-of-distribution generalization on ImageNet, while also significantly outperforming these methods on Atari achieving above human-level performance on $51$ out of $57$ games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源