论文标题
对称多场振荡
Symmetric multifield oscillons
论文作者
论文摘要
oscillons是长期寿命的空间局部磁场配置,标量电位中有吸引力的非线性支持。我们研究了由多个相互作用场组成的oscillons,每个俄罗斯都具有相同的潜力,具有二次,四分之一和六边形的术语。我们考虑有吸引力或排斥性质的四分之一互动术语。在两场情况下,我们使用两种时态的小振幅形式形式构建了半分析振荡的特征以及潜在参数的不同值和耦合强度。我们使用分析和数值技术来探索稳定的Oscillon解决方案吸引吸引力的盆地,并表明,根据初始扰动大小,不稳定的Oscillons可以完全分散或放松到最接近的稳定配置。我们将分析概括为多场振荡器,并表明其形状和稳定性的控制方程可以映射到在两场情况下产生的方程式。最后,我们在数值和浮标理论上研究了一个和三个空间维度中多组分轨道的出现。
Oscillons are long-lived, spatially localized field configurations, which are supported by attractive non-linearities in the scalar potential. We study oscillons comprised of multiple interacting fields, each having an identical potential with quadratic, quartic and sextic terms. We consider quartic interaction terms of either attractive or repulsive nature. In the two-field case, we construct semi-analytical oscillon profiles for different values of the potential parameters and coupling strength using the two-timing small-amplitude formalism. We use analytical and numerical techniques to explore the basin of attraction of stable oscillon solutions and show that, depending on the initial perturbation size, unstable oscillons can either completely disperse or relax to the closest stable configuration. We generalize our analysis to multifield oscillons and show that the governing equations for their shape and stability can be mapped to the ones arising in the two-field case. Finally, we study the emergence of multicomponent oscillons in one and three spatial dimensions, both numerically and through Floquet theory.