论文标题

通过保存因素改善了多源域的适应

Improved Multi-Source Domain Adaptation by Preservation of Factors

论文作者

Schrom, Sebastian, Hasler, Stephan, Adamy, Jürgen

论文摘要

域适应性(DA)是与深度神经网络的图像分类有关的高度相关研究主题。以复杂的方式组合多个源域以优化分类模型可以改善对目标域的概括。在这里,源和目标图像数据集的数据分布差异起主要作用。在本文中,我们基于视觉因素的理论来描述现实世界场景如何在图像中出现在图像中以及最近的DA数据集如何由此组成。我们表明,可以通过一组所谓的域因子来描述不同的域,它们的值在一个域内是一致的,但可以在范围内变化。许多DA方法试图将所有域因子从特征表示形式中删除为域不变。在本文中,我们表明这可能导致负面转移,因为任务信息的因素也可能会丢失。为了解决这个问题,我们提出了预言因子DA(FP-DA),这是一种训练深度对抗性无监督的DA模型的方法,该模型能够在多域场景中保留特定的任务相关因素。我们在Core50上证明了一个具有许多域的数据集,如何通过与PCA结合的单个域之间的标准一对一转移实验来识别此类因素。通过应用FP-DA,我们表明可以实现最高的平均水平和最低性能。

Domain Adaptation (DA) is a highly relevant research topic when it comes to image classification with deep neural networks. Combining multiple source domains in a sophisticated way to optimize a classification model can improve the generalization to a target domain. Here, the difference in data distributions of source and target image datasets plays a major role. In this paper, we describe based on a theory of visual factors how real-world scenes appear in images in general and how recent DA datasets are composed of such. We show that different domains can be described by a set of so called domain factors, whose values are consistent within a domain, but can change across domains. Many DA approaches try to remove all domain factors from the feature representation to be domain invariant. In this paper we show that this can lead to negative transfer since task-informative factors can get lost as well. To address this, we propose Factor-Preserving DA (FP-DA), a method to train a deep adversarial unsupervised DA model, which is able to preserve specific task relevant factors in a multi-domain scenario. We demonstrate on CORe50, a dataset with many domains, how such factors can be identified by standard one-to-one transfer experiments between single domains combined with PCA. By applying FP-DA, we show that the highest average and minimum performance can be achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源