论文标题

使用基于FPGA的标准元素相机进行实时重新聚焦

Real-Time Refocusing using an FPGA-based Standard Plenoptic Camera

论文作者

Hahne, Christopher, Lumsdaine, Andrew, Aggoun, Amar, Velisavljevic, Vladan

论文摘要

全体摄像机在科学和商业应用中受到越来越多的关注,因为它们捕获了场景中光的整个结构,从而使光转换(例如焦点)在事实后的计算上进行了计算,而不是在拍摄图片时一度和所有人。在许多设置中,还需要实时交互式性能,这反过来又需要大量的计算能力,这是由于代表全体图像所需的大量数据。尽管已证明GPU可以为实时元素渲染提供可接受的性能,但它们的成本和功率要求使它们对嵌入式用途(例如相机内)的效果不佳。另一方面,完成全面渲染的计算是结构良好的,这表明使用专门的硬件。因此,本文提出了一系列由开关驱动的有限脉冲响应(FIR)过滤器,该过滤器使用FPGA实施,以完成高通量空间域渲染。拟议的体系结构提供了适用于广播或摄影中需要的功能效率的渲染硬件设计。对拟议的硬件实施的基准评估表明,可以很容易地实现实时性能,并且对GPU实施的绩效提高了一个数量级的性能,并且在通用CPU实施方面的三个数量级绩效提高。

Plenoptic cameras are receiving increasing attention in scientific and commercial applications because they capture the entire structure of light in a scene, enabling optical transforms (such as focusing) to be applied computationally after the fact, rather than once and for all at the time a picture is taken. In many settings, real-time interactive performance is also desired, which in turn requires significant computational power due to the large amount of data required to represent a plenoptic image. Although GPUs have been shown to provide acceptable performance for real-time plenoptic rendering, their cost and power requirements make them prohibitive for embedded uses (such as in-camera). On the other hand, the computation to accomplish plenoptic rendering is well-structured, suggesting the use of specialized hardware. Accordingly, this paper presents an array of switch-driven Finite Impulse Response (FIR) filters, implemented with FPGA to accomplish high-throughput spatial-domain rendering. The proposed architecture provides a power-efficient rendering hardware design suitable for full-video applications as required in broadcasting or cinematography. A benchmark assessment of the proposed hardware implementation shows that real-time performance can readily be achieved, with a one order of magnitude performance improvement over a GPU implementation and three orders of magnitude performance improvement over a general-purpose CPU implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源