论文标题
丰富的衍生物
Enriched Derivators
论文作者
论文摘要
衍生物的理论为使用同型限制和colimits进行计算提供了方便的抽象设置。在富集的同喻理论中,同型(CO)限制的类似物是加权同型(CO)限制。在本论文中,我们发展了一种衍生物理论,更普遍地,富集在单型衍生物E上的预兆。与未增强的情况并行,这些电子脱位者为研究丰富的同型理论的结构(特别是加权同型(CO)限制)提供了一个框架。 作为E-(PER)衍生物的前体,我们研究电子类别,这些类别富含与E相关的生物学教授(E)的类别。我们证明了有关电子类别的许多基本结果,这些结果与丰富类别的经典结果相似。特别是,我们证明了电子类别的引理,并研究了电子类别的可代表地图。 在任何电子类别中,我们都定义了加权均匀限制和colimits的概念。我们将电子衍生物定义为具有许多其他属性的电子类别。特别是,他们承认所有加权同型(CO)限制。我们表明,Groth,Ponto和Shulman研究的封闭电子模块会引起相关的电子衍生物,因此E-(PER)衍生物的理论捕获了这些示例。但是,通过在E-Prederivator的更一般的环境中工作,我们可以在其他设置中研究加权同型(CO)限制,尤其是在并非所有加权同型(CO)限制的设置中。 使用电子类别Yoneda引理,我们证明了电子趋前的代表性定理。我们表明,我们可以使用此结果来从其基本类别的可表示性结果中推导出封闭电子模块的可表示性定理。
The theory of derivators provides a convenient abstract setting for computing with homotopy limits and colimits. In enriched homotopy theory, the analogues of homotopy (co)limits are weighted homotopy (co)limits. In this thesis, we develop a theory of derivators and, more generally, prederivators enriched over a monoidal derivator E. In parallel to the unenriched case, these E-prederivators provide a framework for studying the constructions of enriched homotopy theory, in particular weighted homotopy (co)limits. As a precursor to E-(pre)derivators, we study E-categories, which are categories enriched over a bicategory Prof(E) associated to E. We prove a number of fundamental results about E-categories, which parallel classical results for enriched categories. In particular, we prove an E-category Yoneda lemma, and study representable maps of E-categories. In any E-category, we define notions of weighted homotopy limits and colimits. We define E-derivators to be E-categories with a number of further properties; in particular, they admit all weighted homotopy (co)limits. We show that the closed E-modules studied by Groth, Ponto and Shulman give rise to associated E-derivators, so that the theory of E-(pre)derivators captures these examples. However, by working in the more general context of E-prederivators, we can study weighted homotopy (co)limits in other settings, in particular in settings where not all weighted homotopy (co)limits exist. Using the E-category Yoneda lemma, we prove a representability theorem for E-prederivators. We show that we can use this result to deduce representability theorems for closed E-modules from representability results for their underlying categories.