论文标题
观察超低su($ n $)哈伯德模型中的抗磁相关性
Observation of antiferromagnetic correlations in an ultracold SU($N$) Hubbard model
论文作者
论文摘要
Mott绝缘子是密切相关的物理学的范式,与新颖和难以解释的特性产生了物质的阶段。预计将Mott绝缘子的典型SU(2)对称为SU($ n $)将在低温下产生异国情调的量子磁性,但了解强量子波动对大$ N $的效果仍然是一个开放的挑战。在这项工作中,我们在实验中观察到Ytterbium Atoms在光学晶格中实现的SU(6)Hubbard模型中最近的邻居自旋相关性。我们研究一维,二维正方形和三维立方晶格几何形状。与SU(2)相关性相比,由于强烈的Pomeranchuk冷却,测得的SU(6)自旋相关性大大增强。我们还基于确切的对角和确定性量子蒙特卡洛提供了数值计算。一维晶格的实验数据与理论一致,而没有任何拟合参数。理论与实验之间的详细比较使我们可以从测得的相关性推断出$ \左[{0.096 \ pm 0.054 \,\ rm {(理论)} \ pm 0.030 \,\ rm {(bervient)}}}}}}} \ right]/k _ {对于二维晶格,实验到达下方的熵,我们的计算收敛,突出了实验作为量子模拟。这些结果为研究长期SU($ n $)量子磁性的研究打开了大门。
Mott insulators are paradigms of strongly correlated physics, giving rise to phases of matter with novel and hard-to-explain properties. Extending the typical SU(2) symmetry of Mott insulators to SU($N$) is predicted to give exotic quantum magnetism at low temperatures, but understanding the effect of strong quantum fluctuations for large $N$ remains an open challenge. In this work, we experimentally observe nearest-neighbor spin correlations in the SU(6) Hubbard model realized by ytterbium atoms in optical lattices. We study one-dimensional, two-dimensional square, and three-dimensional cubic lattice geometries. The measured SU(6) spin correlations are dramatically enhanced compared to the SU(2) correlations, due to strong Pomeranchuk cooling. We also present numerical calculations based on exact diagonalization and determinantal quantum Monte Carlo. The experimental data for a one-dimensional lattice agree with theory, without any fitting parameters. The detailed comparison between theory and experiment allows us to infer from the measured correlations a lowest temperature of $\left[{0.096 \pm 0.054 \, \rm{(theory)} \pm 0.030 \, \rm{(experiment)}}\right]/k_{\rm B}$ times the tunneling amplitude. For two- and three-dimensional lattices, experiments reach entropies below where our calculations converge, highlighting the experiments as quantum simulations. These results open the door for the study of long-sought SU($N$) quantum magnetism.