论文标题
聚合物信息学的潜力和挑战:用于聚合物设计的机器学习
Potentials and challenges of polymer informatics: exploiting machine learning for polymer design
论文作者
论文摘要
由于聚合物的物理和化学特性高度多样化,对聚合物材料的需求迅速增长。聚合物信息学是聚合物科学,计算机科学,信息科学和机器学习的跨学科研究领域,它是利用现有聚合物数据的平台,以有效地设计功能性聚合物。尽管采用数据驱动的聚合物设计方法有许多潜在的好处,但归因于聚合物信息学的开发构成了归因于聚合物的复杂层次结构的显着挑战,例如缺乏开放数据库和统一的结构表示。在这项研究中,我们通过四个观点回顾并讨论机器学习在聚合物设计过程的不同方面的应用:聚合物数据库,聚合物的表示形式(描述符),聚合物性能的预测模型和聚合物设计策略。我们希望本文可以作为对聚合物信息学领域感兴趣的研究人员的入口处。
There has been rapidly growing demand of polymeric materials coming from different aspects of modern life because of the highly diverse physical and chemical properties of polymers. Polymer informatics is an interdisciplinary research field of polymer science, computer science, information science and machine learning that serves as a platform to exploit existing polymer data for efficient design of functional polymers. Despite many potential benefits of employing a data-driven approach to polymer design, there has been notable challenges of the development of polymer informatics attributed to the complex hierarchical structures of polymers, such as the lack of open databases and unified structural representation. In this study, we review and discuss the applications of machine learning on different aspects of the polymer design process through four perspectives: polymer databases, representation (descriptor) of polymers, predictive models for polymer properties, and polymer design strategy. We hope that this paper can serve as an entry point for researchers interested in the field of polymer informatics.