论文标题

单调方案的收敛速率用于无限总变化的数据的保护定律

Convergence rates of monotone schemes for conservation laws for data with unbounded total variation

论文作者

Fjordholm, Ulrik Skre, Lye, Kjetil Olsen

论文摘要

我们证明,只要初始数据的Hölder指数大于$ 1/2 $,我们证明了Hölder连续初始数据的单调方案的融合率。对于严格的$ \ mathrm {lip}^+$稳定单调方案,我们证明对任何积极的Hölder指数都会收敛。提出了验证理论的数值实验。

We prove convergence rates of monotone schemes for conservation laws for Hölder continuous initial data with unbounded total variation, provided that the Hölder exponent of the initial data is greater than $1/2$. For strictly $\mathrm{Lip}^+$ stable monotone schemes, we prove convergence for any positive Hölder exponent. Numerical experiments are presented which verify the theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源