论文标题
单调方案的收敛速率用于无限总变化的数据的保护定律
Convergence rates of monotone schemes for conservation laws for data with unbounded total variation
论文作者
论文摘要
我们证明,只要初始数据的Hölder指数大于$ 1/2 $,我们证明了Hölder连续初始数据的单调方案的融合率。对于严格的$ \ mathrm {lip}^+$稳定单调方案,我们证明对任何积极的Hölder指数都会收敛。提出了验证理论的数值实验。
We prove convergence rates of monotone schemes for conservation laws for Hölder continuous initial data with unbounded total variation, provided that the Hölder exponent of the initial data is greater than $1/2$. For strictly $\mathrm{Lip}^+$ stable monotone schemes, we prove convergence for any positive Hölder exponent. Numerical experiments are presented which verify the theory.