论文标题

AGM中的标志选择,属属两个theta常数

Sign choices in the AGM for genus two theta constants

论文作者

Kieffer, Jean

论文摘要

在准线性时间中计算属2 theta常数的现有算法使用borchardt序列,这是四个复数数字的算术几何平均值的类似物。在本文中,我们表明,这些borchardt序列仅由正方根的良好选择给出,如属1属。这消除了算法中的符号不​​确定,而无需依赖数值集成。

Existing algorithms to compute genus 2 theta constants in quasi-linear time use Borchardt sequences, an analogue of the arithmetic-geometric mean for four complex numbers. In this paper, we show that these Borchardt sequences are given by good choices of square roots only, as in the genus 1 case. This removes the sign indeterminacies in the algorithm without relying on numerical integration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源