论文标题
AGM中的标志选择,属属两个theta常数
Sign choices in the AGM for genus two theta constants
论文作者
论文摘要
在准线性时间中计算属2 theta常数的现有算法使用borchardt序列,这是四个复数数字的算术几何平均值的类似物。在本文中,我们表明,这些borchardt序列仅由正方根的良好选择给出,如属1属。这消除了算法中的符号不确定,而无需依赖数值集成。
Existing algorithms to compute genus 2 theta constants in quasi-linear time use Borchardt sequences, an analogue of the arithmetic-geometric mean for four complex numbers. In this paper, we show that these Borchardt sequences are given by good choices of square roots only, as in the genus 1 case. This removes the sign indeterminacies in the algorithm without relying on numerical integration.