论文标题

幻影标量场II:降低了带电的解决方案的静态间距

Static spacetimes haunted by a phantom scalar field II: dilatonic charged solutions

论文作者

Nozawa, Masato

论文摘要

我们提出了一种在爱因斯坦 - 马克斯韦尔系统中生成静态解决方案的方法,该方法基于非线性Sigma模型的目标空间的对称性,在$ n(\ ge 4)$ dimensions中以$ n(\ ge 4)$尺寸生成静态解。与传统的爱因斯坦 - 马克斯韦 - 迪拉顿系统不同,对于幻影dilaton场而言似乎是耦合常数的临界值。在非批评的情况下,目标空间为$ \ Mathbb r \ times {\ rm sl}(2,2,\ mathbb r)/h $,带有最大亚组$ $ h = \ {{\ rm so}(2)(2),{\ rm so}(\ rm so}(1,1)(1,1)(1,1)\} $,而旋转的案例却是近距离旋转的范围,旋转范围是旋转的一个旋转范围。向量形成一个非犹太象征代数。在任何一种情况下,我们都将形式主义充满中性溶液,并显示(i)Fisher溶液,(ii)Gibbons溶液和(iii)Ellis-Bronnikov溶液的膨胀电荷版本的分析表达。我们详细讨论这些解决方案的全球结构。事实证明,Fisher和Gibbons类中包含的某些解决方案具有参数区域中所有标量曲率不变的参数区域中繁殖(P.P)曲率奇异性。这些P.P曲率的奇异性不会被视野掩盖,将它们刺入了物理上难以置信的奇异空间。我们还证明了带有扩张的Ellis-Bronnikov解决方案的参数范围,该溶液在该参数范围内代表两侧渐近平坦区域中的常规虫洞时空。

We present a method to generate static solutions in the Einstein-Maxwell system with a (phantom) dilaton field in $n(\ge 4)$-dimensions, based upon the symmetry of the target space for the nonlinear sigma model. Unlike the conventional Einstein-Maxwell-dilaton system, there appears a critical value of the coupling constant for a phantom dilaton field. In the noncritical case, the target space is $\mathbb R\times {\rm SL}(2,\mathbb R)/H$ with the maximal subgroup $H=\{{\rm SO}(2), {\rm SO}(1,1)\}$, whereas in the critical case the target space becomes a symmetric pp-wave and the corresponding Killing vectors form a non-semisimple algebra. In either case, we apply the formalism to charge up the neutral solutions and show the analytical expression for dilatonic charged versions of (i) the Fisher solution, (ii) the Gibbons solution, and (iii) the Ellis-Bronnikov solution. We discuss global structures of these solutions in detail. It turns out that some solutions contained in the Fisher and Gibbons classes possess the parallelly propagated (p.p) curvature singularities in the parameter region where all the scalar curvature invariants remain bounded. These p.p curvature singularities are not veiled by a horizon, thrusting them into physically untenable nakedly singular spacetimes. We also demonstrate that the dilatonic-charged Ellis-Bronnikov solution admits a parameter range under which the solution represents a regular wormhole spacetime in the two-sided asymptotically flat regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源