论文标题
维度2中的布朗运动至上
Running supremum of Brownian motion in dimension 2: exact and asymptotic results
论文作者
论文摘要
本文研究了$π_t(a_1,a_2)= \ mathbb {p} \ left(\ sup \ limits_ {t \ in [0,t]}(σ_1B(t)-c_1t)> a_1> a_1,\ sup \ sup \ sup \ sup \ limits_ in [0, b(t)-c_2t)> a_2 \ right),其中$ \ {b(t):t \ geq 0 \} $是一种标准的布朗尼运动,具有$ t> 0,σ_1,σ_2> 0,c_1,c_1,c_1,c_2,c_2 \ in \ mathb {r}。 $π_t\ left(A_1,A_2 \右)$,并在所谓的多源和高阈值制度中找到其渐近行为。
This paper investigates $π_T(a_1,a_2) = \mathbb{P}\left(\sup\limits_{t\in[0,T]} (σ_1B(t)-c_1t)>a_1, \sup\limits_{t\in[0,T]}( σ_2 B(t)-c_2t)>a_2\right),$ where $\{B(t) : t \geq 0\}$ is a standard Brownian motion, with $T >0, σ_1,σ_2>0, c_1, c_2\in\mathbb{R}.$ We derive explicit formula for the probability $π_T\left(a_1,a_2\right)$ and find its asymptotic behavior both in the so called many-source and high-threshold regimes.