论文标题
四个角度的外部曲率和共形高斯 - 骨网
Extrinsic curvature and conformal Gauss-Bonnet for four-manifolds with corner
论文作者
论文摘要
本文在带有角落的四维Riemannian歧管的角落定义了两个新的外部曲率量。其中之一是一个侧重的保形不变式,另一个的共形转换受新的线性二阶二阶刻度连形的偏差差分差。然后根据这些数量来陈述高斯河网定理。
This paper defines two new extrinsic curvature quantities on the corner of a four-dimensional Riemannian manifold with corner. One of these is a pointwise conformal invariant, and the conformal transformation of the other is governed by a new linear second-order pointwise conformally invariant partial differential operator. The Gauss-Bonnet theorem is then stated in terms of these quantities.