论文标题
CT材料分解的空间光谱过滤器的设计
Design of Spatial-Spectral Filters for CT Material Decomposition
论文作者
论文摘要
光谱CT已显示出对高敏性定量成像和材料分解的希望。这项工作提出了一种称为“空间光谱过滤器”(SSF)的新设备,该设备由位于X射线源附近的瓷砖阵列组成,用于调节X射线梁的光谱形状。移动过滤器以获得每个光谱通道中稀疏的投影数据。为了处理此稀疏数据,我们采用了直接基于模型的材料分解(MBMD)来直接从SSF CT数据重建基材料密度图像。为了评估不同可能的SSF设计,我们定义了一种新的基于Fisher信息的预测图像质量指标,称为可分离性指数,该指标表征了光谱CT系统区分两种或更多材料的信号的能力。该预测度量用于定义系统设计优化框架。我们已经应用了此框架来找到过滤器材料,滤清器宽度和SSF CT的源设置的优化组合。我们进行了基于仿真的设计优化研究,并为水/碘成像和水/碘/gadolinium/Gold成像提供了基于模拟的设计优化研究,用于不同患者的水/碘/碘/碘/iodine/Gadolinium/Gold成像。最后,我们使用模拟的SSFCT数据使用优化的设计提出了MBMD结果,以证明重建基材料密度图像并显示优化设计的好处的能力。
Spectral CT has shown promise for high-sensitivity quantitative imaging and material decomposition. This work presents a new device called a spatial-spectral filter (SSF) which consists of a tiled array of filter materials positioned near the x-ray source that is used to modulate the spectral shape of the x-ray beam. The filter is moved to obtain projection data that is sparse in each spectral channel. To process this sparse data, we employ a direct model-based material decomposition (MBMD)to reconstruct basis material density images directly from the SSF CT data. To evaluate different possible SSF designs, we define a new Fisher-information-based predictive image quality metric called separability index which characterizes the ability of a spectral CT system to distinguish between the signals from two or more materials. This predictive metric is used to define a system design optimization framework. We have applied this framework to find optimized combinations of filter materials, filter tile widths, and source settings for SSF CT. We conducted simulation-based design optimization study and separability-optimized filter designs are presented for water/iodine imaging and water/iodine/gadolinium/gold imaging for different patient sizes. Finally, we present MBMD results using simulated SSFCT data using the optimized designs to demonstrate the ability to reconstruct basis material density images and to show the benefits of the optimized designs.