论文标题

信息结构,战略措施和相关控制拓扑的几何形状

Geometry of Information Structures, Strategic Measures and associated Control Topologies

论文作者

Saldi, Naci, Yuksel, Serdar

论文摘要

在应用数学,工程以及社会和自然科学的许多领域中,信息的权力下放是决定如何解决问题的关键方面。在这篇评论文章中,我们在概率理论和几何环境中研究信息结构。我们定义信息结构,对它们进行各种拓扑,并在信息结构和分散的控制/决策政策引起的战略措施上研究封闭性,紧凑性和凸性特性,以不同程度的放松程度,以获取私人或共同的随机性。最终,我们为最佳决策/控制策略提供了存在和紧密的近似结果。我们通过放松和凸面程序讨论各种下边界技术,从经典的可实现和经典的不可交流(例如量子和不信号)放松。对于每个这些,我们都建立了封闭性和凸性特性,也建立了相关结构的层次结构。作为第二个主要主题,我们审查并介绍了独立于信息结构的决策/控制策略的各种拓扑,但是信息结构决定了拓扑结构是否需要实用性,即使存在,紧凑,凸化或近似结果。这些方法(我们称为战略措施方法和控制拓扑方法)在最佳分散决策和控制中为存在,近似和上限和下限带来了互补的结果。

In many areas of applied mathematics, engineering, and social and natural sciences, decentralization of information is a key aspect determining how to approach a problem. In this review article, we study information structures in a probability theoretic and geometric context. We define information structures, place various topologies on them, and study closedness, compactness and convexity properties on the strategic measures induced by information structures and decentralized control/decision policies under varying degree of relaxations with regard to access to private or common randomness. Ultimately, we present existence and tight approximation results for optimal decision/control policies. We discuss various lower bounding techniques, through relaxations and convex programs ranging from classically realizable and classically non-realizable (such as quantum and non-signaling) relaxations. For each of these, we establish closedness and convexity properties and also a hierarchy of correlation structures. As a second main theme, we review and introduce various topologies on decision/control strategies defined independent of information structures, but for which information structures determine whether the topologies entail utility in arriving at existence, compactness, convexification or approximation results. These approaches, which we term as the strategic measures approach and the control topology approach, lead to complementary results on existence, approximations and upper and lower bounds in optimal decentralized decision and control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源