论文标题

大脑网络因果推断的图形神经网络框架

A Graph Neural Network Framework for Causal Inference in Brain Networks

论文作者

Wein, Simon, Malloni, Wilhelm, Tomé, Ana Maria, Frank, Sebastian M., Henze, Gina-Isabelle, Wüst, Stefan, Greenlee, Mark W., Lang, Elmar W.

论文摘要

神经科学中的一个核心问题是,大脑中的自我组织动态相互作用如何在其相对静态的结构主链上出现。由于不同大脑区域之间的空间和时间依赖性的复杂性,完全理解结构和功能之间的相互作用仍然具有挑战性,并且是一项激烈研究的领域。在本文中,我们提出了一个图形神经网络(GNN)框架,以描述基于结构解剖学布局的功能相互作用。 GNN允许我们处理图形结构的时空信号,从而有可能将源自扩散张量成像(DTI)与时间神经活动曲线得出的结构信息相结合,例如在功能磁共振成像中观察到的(FMRI)。此外,通过这种数据驱动的方法学到的不同大脑区域之间的动态相互作用可以提供因果关系强度的多模式衡量。我们通过评估其复制经验观察到的神经激活曲线的能力来评估所提出的模型的准确性,并将其与矢量自动回归(VAR)的性能进行比较,就像Granger因果关系中一样。我们表明,GNN能够捕获数据中的长期依赖性,并在计算上扩展到大规模网络的分析。最后,我们确认,GNN学到的功能可以通过MRI扫描仪类型和采集协议进行概括,并通过证明可以通过对早期和不同研究的数据进行预先培训的GNN来提高小型数据集的性能。我们得出的结论是,所提出的多模式GNN框架可以为大脑中的结构功能关系提供新的观点。因此,这种方法对于大脑网络中信息流的表征可能是有希望的。

A central question in neuroscience is how self-organizing dynamic interactions in the brain emerge on their relatively static structural backbone. Due to the complexity of spatial and temporal dependencies between different brain areas, fully comprehending the interplay between structure and function is still challenging and an area of intense research. In this paper we present a graph neural network (GNN) framework, to describe functional interactions based on the structural anatomical layout. A GNN allows us to process graph-structured spatio-temporal signals, providing a possibility to combine structural information derived from diffusion tensor imaging (DTI) with temporal neural activity profiles, like observed in functional magnetic resonance imaging (fMRI). Moreover, dynamic interactions between different brain regions learned by this data-driven approach can provide a multi-modal measure of causal connectivity strength. We assess the proposed model's accuracy by evaluating its capabilities to replicate empirically observed neural activation profiles, and compare the performance to those of a vector auto regression (VAR), like typically used in Granger causality. We show that GNNs are able to capture long-term dependencies in data and also computationally scale up to the analysis of large-scale networks. Finally we confirm that features learned by a GNN can generalize across MRI scanner types and acquisition protocols, by demonstrating that the performance on small datasets can be improved by pre-training the GNN on data from an earlier and different study. We conclude that the proposed multi-modal GNN framework can provide a novel perspective on the structure-function relationship in the brain. Therewith this approach can be promising for the characterization of the information flow in brain networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源