论文标题
使用射线追踪模拟来表征Foxsi Rocket实验中的幽灵射线
Use of a ray-tracing simulation to characterize ghost rays in the FOXSI rocket experiment
论文作者
论文摘要
与基于间接成像的技术相比,直接聚焦成像X射线可提供更大的灵敏度和更高的动态范围。 Focusing Optics X射线太阳能成像仪(FOXSI)是一个发声的火箭有效载荷,使用七组嵌套的Wolter-I Figust镜子通过直接聚焦在硬X射线中观察太阳。表征这些光学的性能对于优化其性能并了解其产生的数据至关重要。在本文中,我们提出了我们创建和开发的射线追踪模拟,以研究Wolter-I X射线镜。我们通过建模Foxsi Rocket光学元件来验证了射线追踪模拟的准确性。我们发现模拟预测与光学测量的实验室数据之间的协议令人满意。我们使用射线追踪模拟来表征由光子以某些入射角产生的单一反射射线(即幽灵射线)的背景模式,仅反映了一个两分段的Wolter-i数字中的一个,并且仍达到焦平面。我们使用射线追踪模拟的结果来理解并制定一组可用于减轻幽灵光线对Foxsi光学模块的影响的策略。这些策略包括优化在Foxsi中使用的最小的Wolter-i镜子的入口和出口,蜂窝类型准直仪和放置在望远镜孔径上的楔形吸收器的孔。事实证明,射线追踪模拟是研究Wolter-I X射线光学器件的可靠工具。它可以用于许多应用中,包括天体物理学,材料科学和医学成像。
Imaging X-rays by direct focusing offers greater sensitivity and a higher dynamic range compared to techniques based on indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload that uses seven sets of nested Wolter-I figured mirrors to observe the Sun in hard X-rays through direct focusing. Characterizing the performance of these optics is critical to optimize their performance and to understand their resulting data. In this paper, we present a ray-tracing simulation we created and developed to study Wolter-I X-ray mirrors. We validated the accuracy of the ray-tracing simulation by modeling the FOXSI rocket optics. We found satisfactory agreements between the simulation predictions and laboratory data measured on the optics. We used the ray-tracing simulation to characterize a background pattern of singly reflected rays (i.e., ghost rays) generated by photons at certain incident angles reflecting on only one of a two-segment Wolter-I figure and still reaching the focal plane. We used the results of the ray-tracing simulation to understand, and to formulate a set of strategies that can be used to mitigate, the impact of ghost rays on the FOXSI optical modules. These strategies include the optimization of aperture plates placed at the entrance and exit of the smallest Wolter-I mirror used in FOXSI, a honeycomb type collimator, and a wedge absorber placed at the telescope aperture. The ray-tracing simulation proved to be a reliable set of tools to study Wolter-I X-ray optics. It can be used in many applications, including astrophysics, material sciences, and medical imaging.