论文标题
PP-Linknet:通过多阶段训练改善高分辨率卫星图像的语义分割
PP-LinkNet: Improving Semantic Segmentation of High Resolution Satellite Imagery with Multi-stage Training
论文作者
论文摘要
道路网络和建筑足迹提取对于许多应用程序,例如更新地图,交通法规,城市规划,骑车,灾难响应\ textit {etc}。映射道路网络目前既昂贵又富有劳动力。最近,通过应用深神经网络的应用改善图像分割的改进显示了从大规模,高分辨率卫星图像提取道路段的有希望的结果。但是,由于缺乏足够的标记培训数据来建立用于行业级应用的模型所需的较大挑战。在本文中,我们提出了一种两阶段的转移学习技术,以改善卫星图像的语义分割的鲁棒性,该图像利用了从拥挤的OpenStreetMap(OSM)数据中自动获得的嘈杂的伪基地面真理掩码(没有人工劳动)。我们进一步提出了金字塔池 - 链接网络(PP-linknet),这是一种改进的深层神经网络,用于分割,使用焦点损失,多个学习率和上下文模块。我们通过在三个受欢迎的数据集上对两个任务进行的评估(即道路提取和建筑物足迹检测)进行了评估来证明我们的方法的优势。具体而言,我们在SpaceNet建筑足迹数据集上获得78.19 \%的含义,分别在SpaceNet和DeepGlobe Road提取数据集的道路拓扑度量指标上,为67.03 \%和77.11 \%。
Road network and building footprint extraction is essential for many applications such as updating maps, traffic regulations, city planning, ride-hailing, disaster response \textit{etc}. Mapping road networks is currently both expensive and labor-intensive. Recently, improvements in image segmentation through the application of deep neural networks has shown promising results in extracting road segments from large scale, high resolution satellite imagery. However, significant challenges remain due to lack of enough labeled training data needed to build models for industry grade applications. In this paper, we propose a two-stage transfer learning technique to improve robustness of semantic segmentation for satellite images that leverages noisy pseudo ground truth masks obtained automatically (without human labor) from crowd-sourced OpenStreetMap (OSM) data. We further propose Pyramid Pooling-LinkNet (PP-LinkNet), an improved deep neural network for segmentation that uses focal loss, poly learning rate, and context module. We demonstrate the strengths of our approach through evaluations done on three popular datasets over two tasks, namely, road extraction and building foot-print detection. Specifically, we obtain 78.19\% meanIoU on SpaceNet building footprint dataset, 67.03\% and 77.11\% on the road topology metric on SpaceNet and DeepGlobe road extraction dataset, respectively.