论文标题

Trine:三方异质网络的网络表示学习

TriNE: Network Representation Learning for Tripartite Heterogeneous Networks

论文作者

Gharibshah, Zhabiz, Zhu, Xingquan

论文摘要

在本文中,我们研究了三方异质网络的网络表示学习,该网络学习具有三种类型的节点实体的网络的节点表示功能。我们认为三方网络在现实世界中很常见,而表示学习的基本挑战是网络中各种节点类型和链接之间的异质关系。为了应对挑战,我们开发了一个称为Trine的三方异质网络嵌入。该方法考虑了唯一的用户目标三方关系,以建立一个目标函数来建模节点之间的显式关系(观察到的链接),并捕获三方节点之间的隐式关系(跨三方节点集跨三方链接)。该方法组织了Metapath指导随机步行,以创建网络中所有节点类型的异质社区。然后,将这些信息用于基于关节优化的异质跳过模型。现实世界中三方网络上的实验验证了使用嵌入节点功能的在线用户响应预测的Trine的性能。

In this paper, we study network representation learning for tripartite heterogeneous networks which learns node representation features for networks with three types of node entities. We argue that tripartite networks are common in real world applications, and the essential challenge of the representation learning is the heterogeneous relations between various node types and links in the network. To tackle the challenge, we develop a tripartite heterogeneous network embedding called TriNE. The method considers unique user-item-tag tripartite relationships, to build an objective function to model explicit relationships between nodes (observed links), and also capture implicit relationships between tripartite nodes (unobserved links across tripartite node sets). The method organizes metapath guided random walks to create heterogeneous neighborhood for all node types in the network. This information is then utilized to train a heterogeneous skip-gram model based on a joint optimization. Experiments on real-world tripartite networks validate the performance of TriNE for the online user response prediction using embedding node features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源