论文标题

基于智能轮胎技术的轮胎滑动角估计

Tire Slip Angle Estimation based on the Intelligent Tire Technology

论文作者

Xu, Nan, Huang, Yanjun, Askari, Hassan, Tang, Zepeng

论文摘要

轮胎滑动角是轮胎/车辆动力学和控制中的重要参数。本文提出了通过智能轮胎技术和机器学习技术的融合来准确的估计方法。智能轮胎由附在其内衬里的MEMS加速度计配备。首先,我们描述了智能轮胎系统以及实施的测试设备。其次,提供了不同的负载和速度条件下的实验结果。然后,我们显示了数据处理的过程,该过程将用于训练三种不同的机器学习技术以估计轮胎滑动角。结果表明,机器学习技术,尤其是在频域中,可以准确估计轮胎滑动角度最高10度。更重要的是,通过精确的轮胎滑动角估计,所有其他状态和参数都可以轻松而精确地获得,这对车辆的高级控制很重要,因此,这项研究显然可以显然提高车辆安全性,尤其是在极端的动作中。

Tire slip angle is a vital parameter in tire/vehicle dynamics and control. This paper proposes an accurate estimation method by the fusion of intelligent tire technology and machine-learning techniques. The intelligent tire is equipped by MEMS accelerometers attached to its inner liner. First, we describe the intelligent tire system along with the implemented testing apparatus. Second, experimental results under different loading and velocity conditions are provided. Then, we show the procedure of data processing, which will be used for training three different machine learning techniques to estimate tire slip angles. The results show that the machine learning techniques, especially in frequency domain, can accurately estimate tire slip angles up to 10 degrees. More importantly, with the accurate tire slip angle estimation, all other states and parameters can be easily and precisely obtained, which is significant to vehicle advanced control, and thus this study has a high potential to obviously improve the vehicle safety especially in extreme maneuvers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源