论文标题

使用在线官能线模型的手写质量分析

Handwriting Quality Analysis using Online-Offline Models

论文作者

Hamdi, Yahia, Akouaydi, Hanen, Boubaker, Houcine, Alimi, Adel M.

论文摘要

这项工作是一个创新的电子学习项目的一部分,允许开发先进的数字教育工具,该工具在为年轻小学生学习笔迹(三到八岁)的过程中提供了反馈。在本文中,我们描述了一种用于儿童手写质量分析的新方法。它会自动发现错误,为儿童写作提供实时的在线反馈,并帮助教师理解和评估儿童的写作技巧。所提出的方法裁定五个主要标准形状,方向,中风顺序,对参考线的位置以及迹线的运动学。它根据三种提取模型的组合(Beta- elliptic模型(BEM)的组合,使用相似性检测(SD)和差异距离(DD)度量,傅立叶描述符模型(FDM)和感知性卷积神经网络(CNN)与支持向量机器(SVM Machine(SVM)比较发动机。我们作品的独创性部分在于系统体系结构,该系统体系结构理解了所检查的手写脚本的互补动态,几何和视觉表示,以及适合各种手写样式和多种脚本语言的有效选择的功能,例如阿拉伯语,拉丁语,数字和符号绘图。该应用程序分别提供了两个互动界面,分别专门针对学习者,教育者,专家或教师,并允许他们轻松适应门徒的特殊性。在突尼斯小学中收集的有400名儿童的数据库增强了对我们框架的评估。实验结果表明,我们建议的框架的效率和鲁棒性,通过使用触觉数字设备在整个手写学习过程中提供积极的反馈来帮助教师和儿童。

This work is part of an innovative e-learning project allowing the development of an advanced digital educational tool that provides feedback during the process of learning handwriting for young school children (three to eight years old). In this paper, we describe a new method for children handwriting quality analysis. It automatically detects mistakes, gives real-time on-line feedback for children's writing, and helps teachers comprehend and evaluate children's writing skills. The proposed method adjudges five main criteria shape, direction, stroke order, position respect to the reference lines, and kinematics of the trace. It analyzes the handwriting quality and automatically gives feedback based on the combination of three extracted models: Beta-Elliptic Model (BEM) using similarity detection (SD) and dissimilarity distance (DD) measure, Fourier Descriptor Model (FDM), and perceptive Convolutional Neural Network (CNN) with Support Vector Machine (SVM) comparison engine. The originality of our work lies partly in the system architecture which apprehends complementary dynamic, geometric, and visual representation of the examined handwritten scripts and in the efficient selected features adapted to various handwriting styles and multiple script languages such as Arabic, Latin, digits, and symbol drawing. The application offers two interactive interfaces respectively dedicated to learners, educators, experts or teachers and allows them to adapt it easily to the specificity of their disciples. The evaluation of our framework is enhanced by a database collected in Tunisia primary school with 400 children. Experimental results show the efficiency and robustness of our suggested framework that helps teachers and children by offering positive feedback throughout the handwriting learning process using tactile digital devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源