论文标题
三维安德森模型中的纠缠动态
Entanglement dynamics in the three-dimensional Anderson model
论文作者
论文摘要
我们在数值上研究了量子淬灭后具有潜在障碍的立方晶格上自由费物的纠缠动态。我们尤其将重点放在临界疾病强度的金属 - 绝缘体转变上,并将结果与相互作用的一维系统中推定的多体定位(MBL)过渡进行比较。我们发现,在过渡点,纠缠熵随时间$ t $而对数增长,而数字熵增长了$ \ sim \ ln \ ln t $。这与最近在海森堡链的MBL相中发现的比例完全相同,并具有随机磁场,这表明MBL相可能更类似于具有局部和离域状态的扩展临界状态,而不是完全局部的相位。我们还表明,可以使用实验易于访问的数字熵来结合安德森模型的完整纠缠熵,并且从纠缠措施获得的金属 - 绝缘体转变处的临界特性与其他探针获得的临界特性一致。
We numerically study the entanglement dynamics of free fermions on a cubic lattice with potential disorder following a quantum quench. We focus, in particular, on the metal-insulator transition at a critical disorder strength and compare the results to the putative many-body localization (MBL) transition in interacting one-dimensional systems. We find that at the transition point the entanglement entropy grows logarithmically with time $t$ while the number entropy grows $\sim\ln\ln t$. This is exactly the same scaling recently found in the MBL phase of the Heisenberg chain with random magnetic fields suggesting that the MBL phase might be more akin to an extended critical regime with both localized and delocalized states rather than a fully localized phase. We also show that the experimentally easily accessible number entropy can be used to bound the full entanglement entropy of the Anderson model and that the critical properties at the metal-insulator transition obtained from entanglement measures are consistent with those obtained by other probes.