论文标题

反馈粒子滤波器用于集体推断

Feedback Particle Filter for Collective Inference

论文作者

Kim, Jin Won, Taghvaei, Amirhossein, Chen, Yongxin, Mehta, Prashant G.

论文摘要

本文的目的是描述有大量($ m $)的非相互作用剂(目标)的反馈粒子滤清器算法,其中大量($ m $)的非代理特定观察值(测量)来自这些药物。以其基本形式,该问题的特征是数据关联不确定性,在这种不确定性中,观察值和代理之间的关联除了代理状态外还必须推断出来。在本文中,大$ m $限制被解释为集体推断的问题。该观点用于得出隐藏代理状态的经验分布的方程。提出并通过数值模拟来说明并说明了此问题的反馈粒子滤波器(FPF)算法。在连续的时间设置中,欧几里得和有限状态空间案例均给出了结果。经典的FPF算法被证明是这些更一般结果的特殊情况($ m = 1 $)。模拟有助于表明该算法很好地近似于大型$ M $的隐藏状态的经验分布。

The purpose of this paper is to describe the feedback particle filter algorithm for problems where there are a large number ($M$) of non-interacting agents (targets) with a large number ($M$) of non-agent specific observations (measurements) that originate from these agents. In its basic form, the problem is characterized by data association uncertainty whereby the association between the observations and agents must be deduced in addition to the agent state. In this paper, the large-$M$ limit is interpreted as a problem of collective inference. This viewpoint is used to derive the equation for the empirical distribution of the hidden agent states. A feedback particle filter (FPF) algorithm for this problem is presented and illustrated via numerical simulations. Results are presented for the Euclidean and the finite state-space cases, both in continuous-time settings. The classical FPF algorithm is shown to be the special case (with $M=1$) of these more general results. The simulations help show that the algorithm well approximates the empirical distribution of the hidden states for large $M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源