论文标题
拖鞋,格罗莫夫(Gromov)的不变式和线条捆绑共同体的对称性
Flops, Gromov-Witten Invariants and Symmetries of Line Bundle Cohomology on Calabi-Yau Three-folds
论文作者
论文摘要
Calabi-yau上的零线捆绑捆绑捆绑捆绑在一起,编码有关flop跃迁的存在和零gromov-witten不变性属的信息。我们通过研究几个PICARD 2 CALABI-YAU三倍,将其视为投影空间产品中的完整交集,从而说明了这一说法。这些歧管中的许多歧管在Picard晶格上表现出某些对称性,这些对称性保留了零的共同体。
The zeroth line bundle cohomology on Calabi-Yau three-folds encodes information about the existence of flop transitions and the genus zero Gromov-Witten invariants. We illustrate this claim by studying several Picard number 2 Calabi-Yau three-folds realised as complete intersections in products of projective spaces. Many of these manifolds exhibit certain symmetries on the Picard lattice which preserve the zeroth cohomology.