论文标题

RMDL:重新校准的多效性深度学习,用于整个幻灯片胃图像分类

RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification

论文作者

Wang, Shujun, Zhu, Yaxi, Yu, Lequan, Chen, Hao, Lin, Huangjing, Wan, Xiangbo, Fan, Xinjuan, Hen, Pheng-Ann

论文摘要

整个幻灯片组织病理学图像(WSIS)在胃癌诊断中起着至关重要的作用。但是,由于WSIS大规模和异常区域的各种尺寸,如何选择信息性区域和分析它们在自动诊断过程中非常具有挑战性。基于最歧视实例的多企业学习对于整个幻灯片胃图像诊断可能有很大的好处。在本文中,我们设计了一种重新校准的多企业深度学习方法(RMDL),以解决这个具有挑战性的问题。我们首先选择歧视实例,然后利用这些实例根据建议的RMDL方法诊断疾病。设计的RMDL网络能够根据从融合功能中学到的重要性系数来捕获实例依赖性和重新校准实例功能。此外,我们构建了带有详细像素级注释的大型全囊胃组织病理学图像数据集。与其他最先进的多企业学习方法相比,对构建的胃数据集的实验结果表明,我们提出的框架的准确性显着提高。此外,我们的方法是一般的,可以扩展到基于WSIS的不同癌症类型的其他诊断任务。

The whole slide histopathology images (WSIs) play a critical role in gastric cancer diagnosis. However, due to the large scale of WSIs and various sizes of the abnormal area, how to select informative regions and analyze them are quite challenging during the automatic diagnosis process. The multi-instance learning based on the most discriminative instances can be of great benefit for whole slide gastric image diagnosis. In this paper, we design a recalibrated multi-instance deep learning method (RMDL) to address this challenging problem. We first select the discriminative instances, and then utilize these instances to diagnose diseases based on the proposed RMDL approach. The designed RMDL network is capable of capturing instance-wise dependencies and recalibrating instance features according to the importance coefficient learned from the fused features. Furthermore, we build a large whole-slide gastric histopathology image dataset with detailed pixel-level annotations. Experimental results on the constructed gastric dataset demonstrate the significant improvement on the accuracy of our proposed framework compared with other state-of-the-art multi-instance learning methods. Moreover, our method is general and can be extended to other diagnosis tasks of different cancer types based on WSIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源