论文标题
通过DIRAC方程式对BOHR半径和电子距离期望值的相对论校正
Relativistic correction to the Bohr radius and electron distance expectation value via Dirac Equation
论文作者
论文摘要
在本文中,从基态的氢原子的狄拉克解决方案开始,确切的结果与电子与质子的距离的期望值相对应,并且发现了最大概率距离。对于类似氢的原子以及与非相对论的BOHR半径和期望值形成对比,对于$ z = \ frac {\ sqrt3} {2} {2} \ frac {1}α$(接近118),与核的期望距离为零,从而使Zere的端到端的端到ZERES到ZERID的端到Z = 118良好的exceent equant from in packeinity from in packeinity from interifect nequient(oper)condect nequient(oper)(oper)。
In this article and beginning with the Dirac solution to the Hydrogen atom in its ground state, the exact results corresponding to the expectation value of the distance of the electron to the proton and the maximum probability distance are found. For hydrogen-like atoms and in contrast to the non relativistic Bohr radius and expectation values, for $Z=\frac{\sqrt3}{2}\frac{1}α$ (close to 118), the expectation distance to the nucleus is zero thus putting an end to the periodic table for Z = 118 nicely matching the last element discovered (Oganesson).