论文标题

基于上下文知识自动化应用程序审核响应生成

Automating App Review Response Generation Based on Contextual Knowledge

论文作者

Gao, Cuiyun, Zhou, Wenjie, Xia, Xin, Lo, David, Xie, Qi, Lyu, Michael R.

论文摘要

移动应用程序的用户体验是可能影响受众群体和应用收入的重要组成部分。为了确保良好的用户体验并协助应用程序开发,几项先前的研究诉诸分析应用程序评论,这是一种直接反映用户对应用程序意见的应用程序存储库。准确响应应用程序评论是缓解用户关注并改善用户体验的方法之一。但是,现有方法的响应质量取决于其他工具的预提取功能,包括手动标记的关键字和预测的审查情绪,这可能会阻碍该方法的普遍性和灵活性。在本文中,我们提出了一种新颖的端到端神经网络方法,名为Core,其上下文知识自然合并并且没有涉及外部工具。具体而言,核心将两种类型的上下文知识集成到培训语料库中,包括App Store的官方应用程序描述以及检索到的语义相似评论的响应,以增强生成的评论响应的相关性和准确性。实践审查数据的实验表明,就BLEU-4而言,核心可以胜过最先进的方法,这是一个准确的度量标准,该指标广泛用于评估文本生成系统。

User experience of mobile apps is an essential ingredient that can influence the audience volumes and app revenue. To ensure good user experience and assist app development, several prior studies resort to analysis of app reviews, a type of app repository that directly reflects user opinions about the apps. Accurately responding to the app reviews is one of the ways to relieve user concerns and thus improve user experience. However, the response quality of the existing method relies on the pre-extracted features from other tools, including manually-labelled keywords and predicted review sentiment, which may hinder the generalizability and flexibility of the method. In this paper, we propose a novel end-to-end neural network approach, named CoRe, with the contextual knowledge naturally incorporated and without involving external tools. Specifically, CoRe integrates two types of contextual knowledge in the training corpus, including official app descriptions from app store and responses of the retrieved semantically similar reviews, for enhancing the relevance and accuracy of the generated review responses. Experiments on practical review data show that CoRe can outperform the state-of-the-art method by 11.53% in terms of BLEU-4, an accuracy metric that is widely used to evaluate text generation systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源