论文标题

足够的标准,可以在Finsler歧管上获得强硬的不平等现象

Sufficient criteria for obtaining Hardy inequalities on Finsler manifolds

论文作者

Mester, Ágnes, Peter, Ioan Radu, Varga, Csaba

论文摘要

我们建立了涉及重量功能的耐力不平等,不一定是可逆的鳍式歧管。我们证明,重量函数的超谐调性提供了足够的条件来获得耐寒性不平等。也就是说,如果$ρ$是一种非负功能,而$ - \boldsymbolδρ\ geq 0 $在弱的意义上,其中$ \boldsymbolδ$是$ \boldsymbolΔρ= \boldsymbolδρ= \ m mathrm {div}(\ boldsymbol {\ boldSymbol { D'Ambrosio和Dipierro中的Hardy不平等现象(Ann。St。H。Poincaré,2013年)。 通过扩展获得的结果,我们证明了加权的caccioppoli型不平等,gagliardo-nirenberg不平等和Heisenberg-pauli-weyl的不确定性原理,完全是芬斯勒歧管。此外,我们通过借助距离函数来定义重量函数,在Finsler-Hadamard歧管上呈现一些耐力的不平等。最后,我们将加权的硬性质量扩展到有界几何形状的一类芬斯勒歧管。

We establish Hardy inequalities involving a weight function on complete, not necessarily reversible Finsler manifolds. We prove that the superharmonicity of the weight function provides a sufficient condition to obtain Hardy inequalities. Namely, if $ρ$ is a nonnegative function and $-\boldsymbolΔ ρ\geq 0$ in weak sense, where $\boldsymbolΔ$ is the Finsler-Laplace operator defined by $ \boldsymbolΔ ρ= \mathrm{div}(\boldsymbol{\nabla} ρ)$, then we obtain the generalization of some Riemannian Hardy inequalities given in D'Ambrosio and Dipierro (Ann. Inst. H. Poincaré, 2013). By extending the results obtained, we prove a weighted Caccioppoli-type inequality, a Gagliardo-Nirenberg inequality and a Heisenberg-Pauli-Weyl uncertainty principle on complete Finsler manifolds. Furthermore, we present some Hardy inequalities on Finsler-Hadamard manifolds with finite reversibility constant, by defining the weight function with the help of the distance function. Finally, we extend a weighted Hardy-inequality to a class of Finsler manifolds of bounded geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源