论文标题

四维半帝国szabó歧管

Four-dimensional semi-Riemannian Szabó manifolds

论文作者

Diallo, Abdoul Salam, Gupta, Punam

论文摘要

在本文中,我们证明了任何Aggineszabó歧管的Riemannian扩展是SzabóPseudo-Riemannian指标,反之亦然。我们证明了仿射表面的RICCI张量是偏斜的,而无处不在,并且仅当仿射表面是szabó时。我们还发现仿射Szabó表面复发的必要条件。我们证明,对于仿生的szabó复发表面,复发张量的复发协会不是局部梯度。

In this paper, we prove that the deformed Riemannian extension of any affine Szabó manifold is a Szabó pseudo-Riemannian metric and vice-versa. We proved that the Ricci tensor of an affine surface is skew-symmetric and nonzero everywhere if and only if the affine surface is Szabó. We also find the necessary and sufficient condition for the affine Szabó surface to be recurrent. We prove that for an affine Szabó recurrent surface the recurrence covector of a recurrence tensor is not locally a gradient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源