论文标题

会话层攻击流量通过程序合成

Session-layer Attack Traffic Classification by Program Synthesis

论文作者

Shi, Lei, Li, Yahui, Alur, Rajeev, Loo, Boon Thau

论文摘要

编写分类规则以识别恶意网络流量是一项耗时且容易出错的任务。基于学习的分类系统会自动从正面和负面流量示例中提取此类规则。但是,由于网络流量的表示和学习策略的限制,这些系统既缺乏涵盖一系列攻击和解释性的表现力,并且可以在会话层完全描述攻击流量的结构时。本文介绍了Sharingan系统,该系统使用程序合成技术在会话层生成网络分类程序。 Sharingan接受原始网络跟踪作为输入,并报告Netqre中攻击流量的潜在模式,Netqre是一种特定的域语言,旨在指定会话层定量属性。使用Sharingan,由于Sharingan学习过程的以下优势,网络运营商可以更好地分析攻击模式:(1)它需要最少的功能工程,(2)它可以有效地实现学习的分类器,并且(3)合成的程序易于破译和编辑。我们开发了一系列新颖的优化,这些优化将大而复杂的任务的合成时间缩短到几分钟。我们的实验表明,Sharingan能够正确识别各种网络攻击轨迹的攻击并生成可解释的输出,同时实现与基于最新学习的入侵检测系统相当的准确性。

Writing classification rules to identify malicious network traffic is a time-consuming and error-prone task. Learning-based classification systems automatically extract such rules from positive and negative traffic examples. However, due to limitations in the representation of network traffic and the learning strategy, these systems lack both expressiveness to cover a range of attacks and interpretability in fully describing the attack traffic's structure at the session layer. This paper presents Sharingan system, which uses program synthesis techniques to generate network classification programs at the session layer. Sharingan accepts raw network traces as inputs, and reports potential patterns of the attack traffic in NetQRE, a domain specific language designed for specifying session-layer quantitative properties. Using Sharingan, network operators can better analyze the attack pattern due to the following advantages of Sharingan's learning process: (1) it requires minimal feature engineering, (2) it is amenable to efficient implementation of the learnt classifier, and (3) the synthesized program is easy to decipher and edit. We develop a range of novel optimizations that reduce the synthesis time for large and complex tasks to a matter of minutes. Our experiments show that Sharingan is able to correctly identify attacks from a diverse set of network attack traces and generates explainable outputs, while achieving accuracy comparable to state-of-the-art learning-based intrusion detection systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源