论文标题
通过学习运动轨迹基于地图的时间一致的地理定位
Map-Based Temporally Consistent Geolocalization through Learning Motion Trajectories
论文作者
论文摘要
在本文中,我们提出了一种新型的轨迹学习方法,该方法使用复发性神经网络在拓扑图上利用运动轨迹,以对物体的时间一致地进行地理定位。受到人类既意识到导航距离的距离和方向的能力的启发,我们的轨迹学习方法都学会了编码为距离顺序的轨迹的模式表示,并转弯角度有助于自定位。我们将学习过程作为条件序列预测问题提出,其中每个输出将对象定位在地图中的可遍性路径上。考虑到应该在图形结构图中拓扑连接的预测序列,我们采用了两种不同的假设生成和消除策略来消除断开的序列预测。我们演示了我们在Kitti立体声视觉探光数据集上的方法,该数据集是一个城市尺度的环境,可以通过公制信息产生轨迹。我们采用地理定位方法的关键好处是,1)我们利用复发性神经网络的强大序列建模能力及其对嘈杂输入的鲁棒性,2)仅需以图形的形式进行地图,而只需使用一种负担得起的传感器来产生运动轨迹和3)不需要初始位置。实验表明,可以通过训练复发性神经网络来学习运动轨迹,并且可以通过两种建议的策略来预测时间一致的地理位置。
In this paper, we propose a novel trajectory learning method that exploits motion trajectories on topological map using recurrent neural network for temporally consistent geolocalization of object. Inspired by human's ability to both be aware of distance and direction of self-motion in navigation, our trajectory learning method learns a pattern representation of trajectories encoded as a sequence of distances and turning angles to assist self-localization. We pose the learning process as a conditional sequence prediction problem in which each output locates the object on a traversable path in a map. Considering the prediction sequence ought to be topologically connected in the graph-structured map, we adopt two different hypotheses generation and elimination strategies to eliminate disconnected sequence prediction. We demonstrate our approach on the KITTI stereo visual odometry dataset which is a city-scale environment and can generate trajectory with metric information. The key benefits of our approach to geolocalization are that 1) we take advantage of powerful sequence modeling ability of recurrent neural network and its robustness to noisy input, 2) only require a map in the form of a graph and simply use an affordable sensor that generates motion trajectory and 3) do not need initial position. The experiments show that the motion trajectories can be learned by training an recurrent neural network, and temporally consistent geolocation can be predicted with both of the proposed strategies.