论文标题
在Riemannian歧管上的最小值问题的梯度下降
Gradient Descent Ascent for Minimax Problems on Riemannian Manifolds
论文作者
论文摘要
在本文中,我们研究了关于Riemanian流形的一类有用的最小问题,并提出了一类有效的基于Riemanian梯度的方法来解决这些最小问题。具体而言,我们提出了一种有效的Riemannian梯度下降(RGDA)算法,以进行确定性的最小值优化。此外,我们证明我们的RGDA的样本复杂性为$ O(κ^2ε^{ - 2})$,用于寻找$ε$ - 固定解决方案的$ε$ - 固定解决方案,即concave(GNSC)minimax问题,其中$κ$表示条件编号。同时,我们提出了一种有效的Riemannian随机梯度下降(RSGDA)算法,用于随机最小值优化,该算法的样品复杂性为$ O(κ^4ε^{ - 4})$,用于查找$ε$ $ $ - $ $ - 计划解决方案。为了进一步降低样品的复杂性,我们提出了一种基于基于动量的方差降低技术的加速riemannian随机梯度下降(ACC-RSGDA)算法。我们证明,我们的ACC-RSGDA算法达到了$ \ tilde {o}(κ^{4}ε^{ - 3})$较低的样本复杂性,以搜索GNSC Minimax问题的$ε$ - 稳定解决方案。对Stiefel歧管上强大的分布优化和可靠的深神经网络(DNN)训练的广泛实验结果表明我们的算法效率。
In the paper, we study a class of useful minimax problems on Riemanian manifolds and propose a class of effective Riemanian gradient-based methods to solve these minimax problems. Specifically, we propose an effective Riemannian gradient descent ascent (RGDA) algorithm for the deterministic minimax optimization. Moreover, we prove that our RGDA has a sample complexity of $O(κ^2ε^{-2})$ for finding an $ε$-stationary solution of the Geodesically-Nonconvex Strongly-Concave (GNSC) minimax problems, where $κ$ denotes the condition number. At the same time, we present an effective Riemannian stochastic gradient descent ascent (RSGDA) algorithm for the stochastic minimax optimization, which has a sample complexity of $O(κ^4ε^{-4})$ for finding an $ε$-stationary solution. To further reduce the sample complexity, we propose an accelerated Riemannian stochastic gradient descent ascent (Acc-RSGDA) algorithm based on the momentum-based variance-reduced technique. We prove that our Acc-RSGDA algorithm achieves a lower sample complexity of $\tilde{O}(κ^{4}ε^{-3})$ in searching for an $ε$-stationary solution of the GNSC minimax problems. Extensive experimental results on the robust distributional optimization and robust Deep Neural Networks (DNNs) training over Stiefel manifold demonstrate efficiency of our algorithms.