论文标题
非脱位表面奇点的lojasiewicz指数
The Łojasiewicz exponent of non-degenerate surface singularities
论文作者
论文摘要
让$ f $为$ \ mathbb {c}^n $的起源。与$ f $相关联的众多不变式之一是其lojasiewicz指数$ \ MATHCAL {l} _0(f)$,在某种程度上测量了$ f $的拓扑。对于通用的表面奇异性$ f $,我们给出了$ \ Mathcal {l} _0(f)$的有效公式。这是对阿诺德的假设之一的实现。
Let $f$ be an isolated singularity at the origin of $\mathbb{C}^n$. One of many invariants that can be associated with $f$ is its Łojasiewicz exponent $\mathcal{L}_0 (f)$, which measures, to some extent, the topology of $f$. We give, for generic surface singularities $f$, an effective formula for $\mathcal{L}_0 (f)$ in terms of the Newton polyhedron of $f$. This is a realization of one of Arnold's postulates.