论文标题

非脱位表面奇点的lojasiewicz指数

The Łojasiewicz exponent of non-degenerate surface singularities

论文作者

Brzostowski, S., Krasiński, T., Oleksik, G.

论文摘要

让$ f $为$ \ mathbb {c}^n $的起源。与$ f $相关联的众多不变式之一是其lojasiewicz指数$ \ MATHCAL {l} _0(f)$,在某种程度上测量了$ f $的拓扑。对于通用的表面奇异性$ f $,我们给出了$ \ Mathcal {l} _0(f)$的有效公式。这是对阿诺德的假设之一的实现。

Let $f$ be an isolated singularity at the origin of $\mathbb{C}^n$. One of many invariants that can be associated with $f$ is its Łojasiewicz exponent $\mathcal{L}_0 (f)$, which measures, to some extent, the topology of $f$. We give, for generic surface singularities $f$, an effective formula for $\mathcal{L}_0 (f)$ in terms of the Newton polyhedron of $f$. This is a realization of one of Arnold's postulates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源