论文标题

卫星到卫星翻译的光谱合成

Spectral Synthesis for Satellite-to-Satellite Translation

论文作者

Vandal, Thomas, McDuff, Daniel, Wang, Weile, Michaelis, Andrew, Nemani, Ramakrishna

论文摘要

携带多光谱传感器的卫星观察卫星被广泛用于监测大气,陆地和海洋的物理和生物学状态。这些卫星在地球上方具有不同的有利位点,并且光谱成像带导致不一致的成像从一个到另一个图像。这给构建下游应用程序带来了挑战。如果我们可以从所有领域的结合中生成现有卫星的合成带,该怎么办?我们解决了通过部分标签的无监督图像到图像翻译问题的生成合成光谱图像的问题,并引入了一种新颖的共享光谱重建损失。通过丢弃一个或多个光谱带进行的模拟实验表明,跨域重建优于从第二个有利位点获得的测量值。在下游云检测任务上,我们表明,使用模型生成合成带可改善基线以外的分段性能。我们提出的方法可以同步多光谱数据,并为更均匀的遥感数据集提供了基础。

Earth observing satellites carrying multi-spectral sensors are widely used to monitor the physical and biological states of the atmosphere, land, and oceans. These satellites have different vantage points above the earth and different spectral imaging bands resulting in inconsistent imagery from one to another. This presents challenges in building downstream applications. What if we could generate synthetic bands for existing satellites from the union of all domains? We tackle the problem of generating synthetic spectral imagery for multispectral sensors as an unsupervised image-to-image translation problem with partial labels and introduce a novel shared spectral reconstruction loss. Simulated experiments performed by dropping one or more spectral bands show that cross-domain reconstruction outperforms measurements obtained from a second vantage point. On a downstream cloud detection task, we show that generating synthetic bands with our model improves segmentation performance beyond our baseline. Our proposed approach enables synchronization of multispectral data and provides a basis for more homogeneous remote sensing datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源