论文标题

通过信息泄漏量化会员隐私

Quantifying Membership Privacy via Information Leakage

论文作者

Saeidian, Sara, Cervia, Giulia, Oechtering, Tobias J., Skoglund, Mikael

论文摘要

已知机器学习模型可以记住培训集中各个数据点的独特属性。可以通过几种类型的攻击来利用这种记忆能力,以推断有关培训数据的信息,最著名的是会员推理攻击。在本文中,我们提出了一种基于信息泄漏以保证会员隐私的方法。具体而言,我们建议使用最大泄漏概念的条件形式来量化有关数据集中各个数据条目的信息,即入口信息泄漏。我们将我们的隐私分析应用于私人合奏(PATE)框架的私人聚合,以保护敏感数据的隐私分类,并证明当注射噪声具有对数 - 连接概率密度时,其聚合机制的入口信息泄漏是Schur-Conconcave。这种泄漏的Schur-Concavity意味着,在标记查询标签的教师中提高了共识会降低其相关的隐私成本。最后,当聚集机制使用拉普拉斯分布式噪声时,我们在入口信息泄漏上得出上限。

Machine learning models are known to memorize the unique properties of individual data points in a training set. This memorization capability can be exploited by several types of attacks to infer information about the training data, most notably, membership inference attacks. In this paper, we propose an approach based on information leakage for guaranteeing membership privacy. Specifically, we propose to use a conditional form of the notion of maximal leakage to quantify the information leaking about individual data entries in a dataset, i.e., the entrywise information leakage. We apply our privacy analysis to the Private Aggregation of Teacher Ensembles (PATE) framework for privacy-preserving classification of sensitive data and prove that the entrywise information leakage of its aggregation mechanism is Schur-concave when the injected noise has a log-concave probability density. The Schur-concavity of this leakage implies that increased consensus among teachers in labeling a query reduces its associated privacy cost. Finally, we derive upper bounds on the entrywise information leakage when the aggregation mechanism uses Laplace distributed noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源