论文标题

具有一定限制的四个理性广场的总和

Sums of four rational squares with certain restrictions

论文作者

Sun, Zhi-Wei

论文摘要

在本文中,我们主要研究具有某些限制的四个理性正方形的总和。令$ \ mathbb q _ {\ ge0} $为非负合理数字​​的集合。我们为理性数字建立以下四平方定理:对于任何$ a,b,c,d \ in \ mathbb q _ {\ ge0} $,每个$ r \ in \ mathbb q _ {\ ge0} $都可以写成$ x^2+y^2+y^2+y^2+z^2+z^2+w^2 $ q _ {\ ge0} $,使得$ ax+by+cz+dw $是一个理性的平方(或一个有理立方体)。本文还包含许多猜想。例如,对于任何带有$ \ gcd(a,b)= 1 $的正整数$ a $ a $ a $ a $ a $ a $ a $ a和$ b $,我们推测,每个$ r \ in \ mathbb q _ {\ ge0} $都可以写成$ aw^4+aw^4+bx^4+y^4+y^2+z^2+z^2 $ w,x,x,x,x,x,x,x,y,z in \ inth \ nath \ nath \ nath \ nmath \ bb q $。

In this paper we mainly study sums of four rational squares with certain restrictions. Let $\mathbb Q_{\ge0}$ be the set of nonnegative rational numbers. We establish the following four-square theorem for rational numbers: For any $a,b,c,d\in\mathbb Q_{\ge0}$, each $r\in\mathbb Q_{\ge0}$ can be written as $x^2+y^2+z^2+w^2$ with $x,y,z,w\in\mathbb Q_{\ge0}$ such that $ax+by+cz+dw$ is a rational square (or a rational cube). This paper also contains many conjectures; for example, for any positive integers $a$ and $b$ with $\gcd(a,b)=1$, we conjecture that each $r\in\mathbb Q_{\ge0}$ can be written as $aw^4+bx^4+y^2+z^2$ with $w,x,y,z\in\mathbb Q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源