论文标题

高压晶体生长,超导特性和NB2P5的电子带结构

High-Pressure Crystal Growth, Superconducting Properties, and Electronic Band Structure of Nb2P5

论文作者

Liu, Xiaolei, Yu, Zhenhai, Liang, Qifeng, Zhou, Chunyin, Wang, Hongyuan, Zhao, Jinggeng, Wang, Xia, Yu, Na, Zou, Zhiqiang, Guo, Yanfeng

论文摘要

Orthorhombic(空间组:PNMA)NB2P5是一个高压相,可屈服于环境压力,可以将其视为锯齿形无限的无限P链插入的NBP2。我们在此报告NB2P5的高压晶体生长及其在TC〜2.6 K时发现其超导过渡的过渡。高质量晶体上的电阻率,磁化和特定的热容量测量揭示了传统的II型型II型薄弱的II型弱耦合的S波的Supercductivation the SuperCductivity the UpperCypoductivity the Upper Priventhon the Upper Priventhon的效果。耦合强度λep〜0.5-0.8和Ginzburg-landau参数\ k {appa} 〜100。电子带结构上的AB始于揭示了受不同对称性保护的节点结构结构。由频带反演引起的,例如,在布里渊区的γ-X和U-R路径上引起的,可能会在表面上带来非平凡的拓扑结构,从而可能在表面上带来非平凡的表面状态。还计算并讨论了(100),(010)和(110)表面上的表面状态。发现富含磷的NB2P5超导体的发现对于设计可能具有非常规超导性或潜在技术应用的更多金属磷化物超导体的设计将具有启发性。

Orthorhombic (space group: Pnma) Nb2P5 is a high-pressure phase that is quenchable to ambient pressure, which could viewed as the zigzag infinite P chain-inserted NbP2. We report herein the high-pressure crystal growth of Nb2P5 and the discovery of its superconducting transition at Tc ~ 2.6 K. The electrical resistivity, magnetization, and specific heat capacity measurements on the high-quality crystal unveiled a conventional type-II weakly coupled s-wave nature of the superconductivity, with the upper critical field Hc2(0) ~ 0.5 T, the electron-phonon coupling strength λep ~ 0.5 - 0.8, and the Ginzburg-Landau parameter \k{appa} ~ 100. The ab initio calculations on the electronic band structure unveiled nodal-line structures protected by different symmetries. The one caused by band inversion, for example, on the Γ-X and U-R paths of the Brillouin zone, likely could bring nontrivial topology and hence possible nontrivial surface state on the surface. The surface states on the (100), (010) and (110) surfaces were also calculated and discussed. The discovery of the phosphorus-rich Nb2P5 superconductor would be instructive for the design of more metal phosphides superconductors which might host unconventional superconductivity or potential technical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源