论文标题

Nakayama函数及其完成Gorenstein代数的完成

The Nakayama functor and its completion for Gorenstein algebras

论文作者

Iyengar, Srikanth B., Krause, Henning

论文摘要

研究了对其中心有限且投影的戈伦斯坦代数的双重性能。使用注射模块的同型类别,证明有一个局部二元定理,用于此类代数的无环络合物的子类别,类似于Grothendieck and Serre的局部双重性定理,在通知代数和代数的几何上的上下文中。一个关键的成分是Gorenstein代数的有界派生类别的Nakayama函子,及其扩展到整个Injemotopy类别的注射模块类别。

Duality properties are studied for a Gorenstein algebra that is finite and projective over its center. Using the homotopy category of injective modules, it is proved that there is a local duality theorem for the subcategory of acyclic complexes of such an algebra, akin to the local duality theorems of Grothendieck and Serre in the context of commutative algebra and algebraic geometry. A key ingredient is the Nakayama functor on the bounded derived category of a Gorenstein algebra, and its extension to the full homotopy category of injective modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源