论文标题
Erdos-Faber-Lovasz猜想弱致密性超图
The Erdos-Faber-Lovasz conjecture for weakly dense hypergraphs
论文作者
论文摘要
概括了密集的超图的概念,我们说如果半开间间隔没有k [2,sqrt(n)),则超图是弱致密的。在我们的主要结果中,我们证明了著名的Erdos-faber-Lovasz猜想,当超图较弱时。
Generalizing the concept of dense hypergraph, we say that a hypergraph is weakly dense, if no k in the half-open interval [2,sqrt(n)) is the degree of more than k^2 vertices. In our main result, we prove the famous Erdos-Faber-Lovasz conjecture when the hypergraph is weakly dense.